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Numerical Implementation and Performance
of Perfectly Matched Layer Boundary

Condition for Waveguide Structures
Zhonghua Wu and Jiayuan Fang, Member, IEEE

Abstract-This paper presents some numerical implementation
issues and the performance of Berenger’s perfectly matched
layer (PML) boundary condition for modeling wave propagation

in wavegnide strictures by the finite-difference time-domain
(FDTD) method, The relation between the thickness and the

conductivity profile of the perfectly matched layer is studied and
a guideline for the selection of PML parameters is given. It is

shown that the standard Yee’s time-marching scheme results in

virtually the same numerical solution as the exponential time-
marching scheme. Numerical tests are provided for parallel-plate
and rectangular waveguides and microstrip lines. It is found that
PML is very effective in absorbing TEM and quasi-TEM waves,

as well as nonTEM waves somewhat above cutoff frequencies,
bnt ineffective in absorbing evanescent waves and nonTEM waves
near cutoff frequencies. The reason for the ineffectiveness of PML

for absorbing evanescent waves is explained. Comparative study
of PML and Higdon’s bonndary condition shows that high-order
Higdon’s boundary condition can reach the same performance of

16-cell PML and can be adjusted for absorbing evanescent waves,

but PML is in general more robust to implement. Performance

of the boundary condition obtained by combining PML and

Higdon’s boundary condition is evatuated.

I. INTRODUCTION

T HE PERFECTLY matched layer (PML), recently pro-

posed by Berenger, is an artificial 10SSYmaterial used

for the truncation of numerical computation domains in ap-

plying the finite-difference time-domain method [1], [2]. The

performance of PML, reported in [1], [2], appears to be over-

whelmingly superior to other available absorbing boundary

conditions. Several papers have also appeared, soon after

Berenger’s invention, that verified the method of PML and

successfully implemented PML in many applications [3], ]4].

This paper presents a detailed study of the performance of

PML as it is applied to model wave propagation in waveguide

structures used in microwave and digital circuit interconnects.

Unlike situations in most scattering problems, evanescent

waves are frequently encountered in waveguide structures.

Whale some positive results on PML for evanescent waves

in waveguides have recently been reported [4], the analytic

field solution in PML, as presented by Berenger [1], implies

that PML shouldn’t work for evanescent waves.
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Our numerical tests show that PML is indeed very effective

in absorbing TEM and quasi–TEM waves, as well as nonTEM

waves somewhat above cutoff frequencies, These numerical

tests also confirm that PML is ineffective in absorbing evanes-

cent waves and nonTEM waves near cutoff frequencies.

This paper begins with a discussion on the wave propagation

in PML and on numerical implementation of PML. The

mechanism of how PML absorbs propagating waves but

not evanescent waves is explained. A relation between the

thickness and the conductivity profile of the perfectly matched

layer is provided as a guideline for implementing PML. The

performance of the standard Yee’s time-marching scheme is

compared with the exponential time-marching scheme used

by Berenger [1], ]2]. Section HI presents the performance of

PML for parallel-plate and rectangular waveguides. Analytic

predictions on behaviors of propagating and evanescent waves

in waveguides filled with PML are compared with numerically

computed results. Comparisons are made between PML and

high order Higdon’s type of boundary conditions. The per-

formance of the boundary condition resulted from combining

PML and Higdon’s type of boundary condition is evaluated.

Effects of PML in modeling wave propagation in microstip

lines are presented in Section IV.

11, WAVE PROPAGATION, IN PML

AND NUMERICAL IMPLEMENTATION ISSUES

With the PML technique introduced by Berenger, the six

components of the electromagnetic field are split into 12

subcomponents, and the six scalar Maxwell’s equations are

replaced by 12 scalar equations. The PML medium has both

electric and magnetic losses. By properly associating different

electric or magnetic conductivities to different subcomponents,

Berenger showed that PML theoretically would not cause any

reflection at an interface with the free-space for incident fields

of any frequencies and incident angles. Detailed formulations

of PML can be found in [1]–[3] and are not to be repeated here.

A. Wave Propagation in PML

Let us take a 2–D example for illustration. Suppose, in the

x-y plane, a semi-infinite PML medium is interfaced with a

semi-infinite free space at the surface z = O. The PML is in

the region z >0. Based on the criteria described by Berenger

for determining the electric and magnetic losses in PML [1],

the electric and magnetic conductivities, OY and o’;, should be
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zero; and the electric and magnetic conductivities, o. and o;,

should satisfy the condhion

az/Eo = a;/po .

Consider an incident field in the free space

~ = ~oejw(t-mc”sp~vsin~)

where O represents any component of the

(1)

(2)

field, 1#0 is its

amplitude, c is the speed of light, and q is the angle between

the x axis and the direction of the wavenumber vector.

Berenger showed that the field component ~, after entering

the PML medium, could be expressed as [1]

+ = @oejw(t-’””’’:”’’”’ )e; :wz,wz, (3)

Next, let us have a close examination of (3) to see how

a wave propagates in PML. If in the z direction the field

is propagating, then cos q is a real number, and the term

e– ““e; c’ Z in (3) contributes to the attenuation of the field.

The smaller the angle p, the larger the attenuation. When the

angle q reaches 90°, there will be no attenuation of the wave

in PML. On the other hand, if the variation of the field in the

z direction is of evanes~e~t nuure, cos q will be an imaginary
z

number, and the term e *OC Z no longer decays the field in

the x dkection. In d-is case, the presence of the PML does not

add any additional attenuation of the wave beyond the original

attenuation (due to the term e–~ -m) of the evanescent

wave itself.

From the properties of the wave propagation in PML

discussed above, one can predict that, in the modeling of wave

propagation in waveguide structures, PML can be effective

for waves somewhat above cutoff frequencies, but ineffective

for waves near cutoff frequencies (when cos p is close to

zero) and evanescent waves (when cos ~ is an imaginary

number). Numerical tests presented in later sections of this

paper confirm this prediction.

B. Selection of PML Parameters

In actual numerical computations, the thickness of PML

is finite, and the PML is terminated by a boundary, say, an

electric wall. As the wave in PML reaches the terminating

boundary and gets reflected, it is further attenuated as it

propagates back toward the free space—PML interface. The

remaining part of this backward propagated wave at the free

space—PML interface will pass through the interface and

enter the free-space region as an unwanted reflection wave.

By adjusting the value of conductivity, one can control the

amount of attenuation in PML, i.e., the amount of reflection

from PML.

The free space—PML interface has theoretically no reflec-

tion to incident fields of any frequencies and incident angles.

For any thickness of PML, ideally one can choose u’s to be

sufficiently large to make reflection from PML as small as

wanted. However, this is not the case in actual numerical com-

putations. Any discontinuities in material properties, such as

the conductivity o, will cause numerical reflections. Therefore

it is of advantage to have conductivity o vary continuously
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Fig. 1. Numerical reflection coefficient versus theoretical reflection coeffi-
cient at the normal incident angle for 4-cell PML of different conductivity

profiles. Curves 1-6 correspond to n in (4) be chosen as O, 0.5, 1, 1,5, 2,
and 2.5. Curve 7 is a line on which the numerical reflection coefficient equafs
the theoretical one.
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Fig. 2. Optimum range of the value n in (4) for different thicknesses of
PML.

with space, as done by Berenger [1]. That is, let cr increase

from zero at the free space—PML interface to its maximum

value cr~ at the outer side of the PML gradually. Let the

thickness of PML be denoted as 8, the conductivity o can

take the following form

()

$n
a(z) = am — .

6
(4)

Then, for PML terminated by an electric wall, the theoretical

reflection coefficient Rth, when’ the reflection due to the spatial

variation of conductivity is ignored, can be calculated as

From the theoretical reflection coefficient Rth at the normal

incidence (q = O) and the power n, the maximum value of

the conductivity o~ can be found as

(n+ 1)6(IC~nRth
gmz —

26
(6)

The actual reflection coefficient in the numerical compu-

tation, denoted as Rnum, is somewhat different from the
theoretical one. If the theoretical reflection coefficient Rth is

set to be too small, then the abrupt change of o with space

can result in a large reflection in the numerical computation.

Therefore, the value of Rth as well as the power n need

to be properly chosen to achieve small reflections. Fig. 1

shows the numerical reflection coefficient Rnum, obtained
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Fig. 3. Optimum range of theoretical reflection coefficients as well as
the corresponding achievable numerical reflection coefficients at the normal
incident angle for different thicknesses of PML.

from numerical computations, versus the theoretical reflection

coefficient Rth at the normal incident angle for 4-cell thick

PML. Curves 1–6 in Fig. 1 correspond to the power n chosen

to be O, 0.5, 1, 1.5, 2, and 2.5, respectively. Curve 7 is a

reference line on which the numerical reflection coefficient

equals the theoretical one. From Fig. 1, it can be seen that

the optimum values of Rth and n are somewhat fuzzy to

determine. However, one can obtain a range of Rth and n,

within which the numerical reflection is small. The good

ranges of Rth and n are found to be different for different

thicknesses of PML. The thicker the PML, the larger the value

of n, and the smaller the value of Rth should be chosen. From

extensive numerical tests, the optimum range of n versus the

thickness of PML medium is presented in Fig. 2, and the

optimum range of Rth versus the PML thickness is shown

in Fig. 3. Fig. 3 also shows the range of actual numerical

reflection coefficient, at the normal incident of angle, that can

be expected when n and Rth are chosen within the specified

regions shown in Figs. 2 and 3.

C. Time-Marching Schemes in Implementing PML

In Berenger’s papers, the exponential time-marching scheme

was used in the finite-difference equations for PML [1],

[2], Our tests show no noticeable differences in numerical

results obtained by the exponential time-marching scheme and

the standard Yee’s central difference scheme. Fig. 4 shows

the numerical reflection coefficients, at the normal incident

angle, of an 8-cell PML implemented with the exponential

time-marching scheme and the standard Yee’s scheme. The

numerical reflection coefficient is obtained by the ratio of the

Fourier transformed reflected field and the incident field. In

this example, the theoretical reflection coefficients of PML are

chosen as 10–3 and 10–6, respectively, and the value of power

n in (4) is set to 2. As can be seen from Fig. 4, there is virtually

no difference in numerical results computed by the exponential

time-marching scheme and the standard Yee’s scheme. Same

observations are obtained in cases where incident waves are

not of the normal incident angle.

The reason for the above phenomenon can be explained as

follows. Inside the PML medium, fields may vary rapidly in

space, but they do not vary any faster in time than they do

when PML is absent. Therefore, the selection of the time-
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Fig. 4. Comparison between reflection coefficients of an 8-cell PML imple-

mented with the central difference and exponential time-marching schemes.
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Fig. 5. Cross section of a parallel-plate waveguide (a = 40 mm).

marching scheme is not critical and it is not essential to use

the exponential time-marching scheme in implementing PML.

III. NUMERICAL TESTS OF PML APPLIED TOWAVEGUIDES

A. Pe#ormance of PA4L for Waveguides

Consider the structure of a parallel-plate waveguide shown
in Fig. 5. The separation a between the two metal plates is

40 mm, The lowest order mode of this structure is the TM.

mode which is actually a TEM mode with a cutoff frequency

at dc. The propagation of the TMO mode fields along the

parallel-plate waveguide is essentially a 1-D wave propagation

problem. For absorbing outgoing waves of TMO mode, which

are of normal incident angle to the free space—PML interface,

the PML boundary condition can perform very well in an

ultra-wide frequency spectrum, as reported in [4].

The lowest order nonTEM mode in the parallel-plate wave-

guide is TM1 and TEI modes, which both have a cutoff

frequency ~c = c/2a = 3.75 GHz. Let us first examine how

the PML boundary condition performs for absorbing the TM1

mode wave. Fig. 6 shows the numerical reflection coefficients

versus frequency for 16-cell PML, calculated as the ratio of the

reflected wave and the incident wave at the location of free

space—PML interface. The theoretical reflection coefficient

~h of PML is chosen to be 10-4,10-6,10-8, and 10-10,

respectively, and the conductivity profiles of PML are all

chosen to be parabolic (n = 2 ). It can be seen from Fig. 6

that the performance of PML for TMl mode is quite different

from that for TMO mode. In the frequency range somewhat

above the cutoff frequency, PML performs very well. The

numerical reflection reaches its minimum obtainable value

when the theoretical reflection coefficient Rtk is set at about

10-6 or below. At the cutoff frequency, as can be observed

from Fig. 6, all the reflection coefficients approach to 1. In

the frequency range below fc, where waves are evanescent, it
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Fig. 6. Numerical reflection coefficients of TMl mode for 16-cell PML
in the pwallel-plate waveguide of Fig. 5, when the theoretical reflection

coefficient is set at different values.
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Fig. 7. Numerical reflection coefficients of ‘I’Ml mode in the pamtlel-plate
w aveguide of Fig. 5 for PML’s of dhYerent thicknesses. The theoretical
reflection coefficient of PML is set at 10’4.

is clear that the reflection coefficients are significantly larger

than those in the frequency range above f.. These numerical

results are consistent with the prediction made in Section

II. Fig. 7 displays the reflection coefficients versus frequency

for 4-cell, 8-cell, and 16-cell PML’s, where the theoretical

reflection coefficient is set at 10–4 and the conductivity profile

is parabolic. Similar conclusions can be obtained from the

results in Fig. 7 as those from Fig. 6. In the frequency range

below the cutoff, the smaller reflection coefficient for thicker

PML medium, seen from Fig. 7, is not due to the absorption

of evanescent waves in PML, but is simply due to the

original attenuation of the evanescent wave in the longer round

path from the free space—PML interface to the electric wall

terminating the PML medium. As a matter of fact, PML does

not introduce additional attenuation to the evanescent wave,

while the spatial variation of conductivity in PML causes

additional reflections. As will be shown later, the attenuation

of evanescent waves in a section of PML is actually somewhat

smaller than that in a section of free space of the same length.

For the structure of the parallel-plate waveguide, it is

possible to find analytic solutions of the field in free space

and in PML medium. Let us consider the case in which the

conductivities (o, O* ) of PML are constant with space. For

TMl mode, it is easy to find that k sin p and k cos y in (3) are

k sin p = 7r/a (7)

kcosp= v’~2uoc0 - (~/a)2. (8)

By substituting k sin p and k cos q in (7) and (8) into (3),

one can find that, when frequency f is larger than j., the

attenuation constant cs and the phase constant

o! = + LIJ’p@J – (7r/a)2
Cow

B = /~2poe0 – (7r/a)2.

2679

0 are

(9)

(10)

When ~ < f., k cos p becomes an imaginary number, the

attenuation and phase constants can be found as

a = /(n/a)z – LJ2LLOe0. (111)

Expressions in (9) to (12) give us the following indications:

1)

2)

3)

4)

The attenuation constant below the cutoff frequency is

exactly the same as that in the waveguide filled with

free space. That is, evanescent waves in PML attenuate

in the same rate as those in the waveguide filled with

free space.

The phase constant above the cutoff frequency is exactly

the same as that in the waveguide filled with free space.

That is, propagating waves in PML travel in the same

speed as those in the vacuum-filled waveguide.

The attenuation constant above the cutoff frequency is

not zero. This is why PML can absorb propagating

waves above the cutoff frequency. But as the frequency

approaches the cutoff frequency, the attenuation constant

a also approaches zero, indicating total reflection at the

cutoff frequency.

The phase constant below the cutoff frequency is not

zero, but is of the “abnormal” negative values.

Analyses above explain why PML is effective for absorbing

propagating waves and ineffective for absorbing evanescent

waves and waves near the cutoff frequency. It is actually not

a difficult task to verify the results in (9) to (12) numerically.

By launching a TMI mode wave in a waveguide filled with

PML, a field component@ at two locations, z and z + h, along

the longitudinal direction of the waveguide can be recorded.

The attenuation and phase constants of the TMl wave in PML

can be extracted by following operations

(13)

(14)

where Y represents the Fourier transform, Im is the operator
of taking the imaginary part of a complex variable. The

waveguide for this test is chosen to be long enough so

that reflections from end boundaries have not reached the

observation points at the time the incident wave is diminished

to virtually zero.

Fig. 8 shows the attenuation constant ~ versus frequency,

obtained from numerical computation, expressed in (13)., and
from theoretical derivations, expressed in (9) and (11). Fig. 9

shows the comparison of numerically and theoretically com-

puted phase constant /3 versus frequency. The conductivity of

PML is constant in space and chosen to be 0.1 S/m. A, can

be seen from Figs. 8 and 9, theoretical predictions on oi and

,8 match very well with numerical solutions.
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Fig. 8. Attenuation constant in a parallel-plate waveguide filled with PML.

The electric conductivity of PML is constant and equal to 0.1 S/m.
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Fig. 9. Phase constant in a parallel-plate waveguide filled with PML. The
electric conductivity of PML is constant and equal to 0.1 S/m.

Next, let us look at TE modes of the parallel-plate wave-

guide. The TE. mode of the parallel-plate waveguide is

actually the same as the TE.o mode of the rectangular wave-

guide. Fig. 10 displays the numerical reflection coefficients

versus frequency for TEIO, TE20 and TE30 modes of a

rectangular waveguide, where the PML medium of a parabolic

conductivity profile is of 16-cell thick. From Fig. 10, the

same conclusions can be made as those for the TM1 mode

of the parallel-plate waveguide. Since higher-order evanescent

waves attenuate faster than lower-order ones, reflections of

higher-order evanescent waves are consequently smaller.

B. Pe~ormance of Higdon ’s Type of Boundary

Condition for Waveguides

As a comparison with PML boundary condition, let us

consider Higdon’s type of absorbing boundary condition. The

principle and analysis of Higdon’s boundary condition can

be found in [5], [6]. In [7], Higdon’s boundary condition is

revised to absorb propagating and/or evanescent waves. The

general expression of the Higdon’s type of boundary condition

can be written as

[(
N

II
Cospi t?-&+—— )]c 15’t+ai 4=0 (15)

i=l

where pi’s and CSi’s are parameters. The ~th-order boundary

condition (15) consists of iV first-order boundary operators,
each has its parameter (q%, c%).

For a plane wave of an attenuation constant a in the x
direction and an incident angle p, the reflection coefficient of
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Fig. 10. Reflection coefficients of TEI II, TEZII and TE30 modes in a rect-

angular waveguide for 16-cell PML with its theoretical reflection coefficient
set at 10–4.

the boundary condition (15) can be foun~d to be approximately

‘= -Ii‘a’‘a)+~:(cospi‘Cosp)(16),=1(a, + a) +j:(cosp, + Cosp)

From (16), it can be seen that minimum reflection occurs when

cw is chosen to be a, and pi is chosen to be p. For a certain

mode of field in a waveguide, the incident angle p and the

attenuation constant csare frequency dependent. Therefore, one

pair of (pi, Qi) corresponds to one particular frequency around

which the reflection coefficient of the boundary condition is

small. If we can select the N pairs of (pi, ai) at proper

frequencies, it is possible to have the boundary condition (15)

perform well over a very wide frequency spectrum.

Let us consider the TMl mode of the parallel-plate wave-

guide of Fig. 5 again. Fig. 11 shows the reflection coefficient

of a fourth-order (N = 4) Higdon’s boundary condition,

where the frequencies of optimum absorption are chosen to

be 5, 8, 12, and 16 GHz. Since the frequencies of optimum

absorption are all above the cutoff frequency (3.75 GHz),

Qi’s should be zero. In numerical computations, especially

for high-order boundary conditions (N 2 3), a small value

of ai can help maintain the stability of computation [8]. For

the results shown in Fig. 11, the ai’s are chosen as follows:

CSl = O,CY2= O, a3 = 0.02/dx and a4 := 0.02/dx, where dx

is the space step of the finite-difference grid. The reflection

coefficient shown in Fig. 11 is obtained from the incident and

the reflected fields 16 cells away from the outer boundary.

Comparison between results of Higdon’s boundary condition

in Fig. 11 and those of 16-cell PML in Fig. 6 shows that,

for propagating waves, the reflection coefficient of a fourth-

order Higdon’s boundary condition can also reach as low as

– 100 dB, which is not worse than that of a 16-cell PML.

Also notice that, in Fig. 11, the reflection coefficient in the

frequency range below ~c is somewhat smaller than those in

Fig. 6, although the Higdon’s boundary condition for this test

is not set to absorb evanescent waves.

Higdon’s boundary condition (15) can be set to absorb
evanescent waves, as shown in [7]. We can select some

boundary operators to absorb propagating waves, while others

to absorb evanescent waves. Fig. 12 shc}ws the reflection co-

efficient for a fifth-order Higdon’s boundary condition, where

the frequencies of optimum absorption are chosen to be 1,2.5,

5, 10, and 15 GHz. That is, there are two boundary operators
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Fig. 11. Reflection coefficient of a fonrth-order Hlgdon’s boundary condition

with its optimum frequencies of absorption set at 5, 8, 12, and 16 GHz.
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Fig. 12. Reflection coefficient of a fiftl-order Higdon’s boundary condkion
with its optimum frequencies of absorption set at 1, 2.5, 5, 10, and 15 GHz.

set for evanescent waves, and three for propagating waves.

Corresponding parameters for this boundary condition are:

Q1 = 75.7, Q2 = 58.5, ci3 = 20, a4 = 0,a!5 = O; COSP1 =

0,cosp2 = O,cosp3 = 0.968, cosp4 = 0.927, cosqs =

0.66. From Fig. 12, we can see the reflection coefficient for

evanescent waves is substantially reduced from that in Fig. 11

and from those corresponding to PML shown in Figs, 6 and 7.

From above comparisons between PML and Higdon’s

boundary condition, we can find the following advantages

and disadvantages of the two boundary conditions. PML

can absorb propagating waves very well but not evanescent

waves. So PML cannot be placed very close to waveguide

discontinuities where evanescent waves are significant.

Higdon’s boundary condition can be tuned to absorb

both evanescent and propagating waves. The selection of

parameters of Hlgdon’s boundary condition is geometry and

mode dependent, and one needs to pay special attention to

numerical stability, while PML does not need much tuning

in its implementation.

C. Combination of PML with Higdon’s Type

of Boundary Condition

From the above discussions, it seems that the combination

of PML with Higdon’s boundary condition should result in a

good absorbing boundary condition for both propagating and

evanescent waves. That is, the PML medium is terminated

by a Higdon’s type of boundary condition instead of by an

electric wall. With such a boundzuy condition, the propagating

wave is mostly absorbed by PML, and the evanescent wave

is absorbed by the Higdon’s boundary condition set for the

evanescent wave.

However, the above expectation is not met in numerical

tests. Numerical computations show that Higdon’s boundary

condition for terminating PML can actually do little improve-

ment on absorbing evanescent waves, The reason for this

phenomenon can be explained as follows.

For an incident wave expressed in (3) in a PML, the

reflection coefficient of Higdon’s boundary condition (15) can

be found to be approximately

~=-~[:;:]:;[~:;;$] (17)
z

In order to have small reflection for evanescent waves, pa-

rameters a,’s should match the attenuation constant a, and

parameters w/c cos p,’s should match the phase constant ~.

Notice that the phase constant ~ in PML is of negative values

for evanescent waves, as can be seen from (12) and Fig. 9. It

is found that the selection of negative values of w/c cos p,

will lead to unstable numerical solutions. So the value of

w/c cos Pi that is closest to the value of the phase constant

/3 of evanescent waves is zero. When w/c cos pi’s are set to

zero, (17) becomes

R=-ll;::;;;;;;- (18)
2

The absolute values of,0 are typically much larger than those

of a. Therefore, even the parameter cii matches the attenuation

constant ci, as can be seen from (18), the reflection coefficient

R is not to be reduced significantly.

Fig. 13 shows the numerical reflection coefficients of PML

terminated by various boundary conditions. The PML medium

for this test is of parabolic conductivity profile, 16-cells thick,

and a theoretical reflection coefficient of 10–4. The Higdon’s

boundary conditions terminating PML are all of the ftrst-

order. The incident wave considered is the TMI mode of the

parallel-plate waveguide shown in Fig. 5. Curve 1 in Fig 13

corresponds to PML terminated by an electric wall. Curve

2 corresponds to PML terminated by a first-order Higdon’s

boundary condition with al and cos PI chosen to be zero.

When al and cos PI are both equal to zero, the Higdon’s

boundary condition actually represents a magnetic wall. The

location of the magnetic wall is at half-space step away from

the terminating boundary, and this is probably the reason why

the reflection coefficient of curve 2 is a little larger than that

of curve 1. For curve 3 in Fig. 13, the parameter al is chosen

to be 58.5, and cos PI is zero. The value of al matches the

attenuation constant o, at the frequency 2.5 GHz. It can be seen

that the Higdon’s boundary condition terminating PML has

little effect, even at 2.5 GHz, in absorbing evanescent waves.

For curve 4, parameters al and cos PI are chosen to be 704.3

and 0.93, which match the attenuation and phase constants

in the PML half-space step to the terminating boundary at

the frequency of 10 GHz. As can be seen from Fig. 13,

such Higdon’s boundary condition can substantial] y reduce

the reflection of propagating waves.
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Fig. 13. Reflection coefficients of a 16-cell PML terminated with different

boundary conditions.
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Numerical results shown above demonstrate that the combi-

nation of PML with Higdon’s boundary condition can improve

the absorption property for propagating waves, but not for

evanescent waves.

IV. NUMERICAL TESTS OF PML

APPLIED TO MICROSTRIP LINES

To simulate a wave propagation along a microstrip line,

PML is placed near the outer computation domain, as shown in

Fig. 14. Due to the symmetry of the structure, only half of the

3-D structure is computed, and the surface at the center of the

metal strip is modeled as a magnetic wall. The number of space

steps in the transverse cross section of the computation domain

mu and ny are denoted in Fig. 14. The relative dielectric

constant of the substrate is 4.

At the end surfaces perpendicular to the metal strip, where

outgoing waves incident upon outer boundaries in near normal

incident angles, PML works very well as expected. A 16-cell

PML can make the reflection coefficient as low as –80 dB.

On the top and the side surfaces of the computation domain,

where fields are mostly evanescent in the direction normal to

outer surfaces and propagating wave components are incident

upon outer boundaries with grazing angles, PML is found to

be less effective.

Fig. 15 shows the percentage errors in the computed voltage

of the microstrip line for different thicknesses of ye PML
placed at different distances away from the center of the

metal strip. Computation domains in the transverse direction

6
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Fig. 15. Percentage errors in the computed voltage of the microstnp line of

Fig. 14. The computation domnin of the cross section is of 20 x 20 or 14x 14

cells. The thickness of PML is 8 or 4 cells.
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Fig. 16. Numerically computed effective dielectric constant of the microstrip
line of Fig. 14. The computation domain of the cross section is of 20 x 20
or 14 x 14 cells. The thickness of PML is 8 or 4 cells.

(rue x ny) for the results shown in Fig. 15 are 14x 14 and

20x 20. The percentage errors in the vo”kage of the microstrip

line is calculated with respect to the reference voltage obtained

with a very large computation domain. The large computation

domain is of the size r~x x ny = 210 x 80, and terminated

by a fourth-order Higdon’s boundary condition. Fig. 16 is the

corresponding computed effective dielectric constant er.ff of

the microstrip line for PML’s of different thicknesses and

distances to the center of the metal strip. ~,,ff is calculated

from the Fourier transform of voltages at two locations along

the microstrip line [9]. In Fig. 16, the curve for the 8-cell

PML and for mr x ny = 20 x 20 almost coincides with the

one computed with the lkirge computation domain, while other

curves contain substantial errors. It can be seen from Figs. 15

and 16 that PML in general can be used for the simulation

of wave propagation along microstrip structures, but needs to

be placed at a certain distance away from the metal strip and

of enough thickness to ensure the reliability of the computed

electrical properties.

V. CONCLUSION

This paper presents tlhe numerical implementation and per-

formance of perfectly matched layer boundary condition for

modeling wave propagation in waveguide structures. It is

shown theoretically and numerically that PML is very effective

in absorbing propagating waves and ineffective in absorbing

evanescent waves. The combination of PML with Higdon’s

boundary condition can enhance the absorption property for
propagating waves but not for evanescent waves. In modeling
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wave propagations in waveguide structures, PML needs to be

placed at certain dktartce away from modeled structures where

evanescent waves are significant.

In our most recent work, a modified formulation of the per-

fectly matched layer is derived. This new boundary condition,

which we call the generalized perfectly matched layer (GPML)

is found to be able to effectively absorb both propagating and

evanescent waves and perfectly match nonPML lossy media

[10].
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