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Numerical Implementation and Performance
of Perfectly Matched Layer Boundary
Condition for Waveguide Structures

Zhonghua Wu and Jiayuan Fang, Member, IEEE

Abstract—This paper presents some numerical implementation
issues and the performance of Berenger’s perfectly matched
layer (PML) boundary condition for modeling wave propagation
in waveguide structures by the finite-difference time-domain
(FDTD) method. The relation between the thickness and the
conductivity profile of the perfectly matched layer is studied and
a guideline for the selection of PML parameters is given. It is
shown that the standard Yee’s time-marching scheme results in
virtually the same numerical solution as the exponential time-
marching scheme. Numerical tests are provided for parallel-plate
and rectangular waveguides and microstrip lines. It is found that
PML is very effective in absorbing TEM and quasi-TEM waves,
as well as nonTEM waves somewhat above cutoff frequencies,
but ineffective in absorbing evanescent waves and nonTEM waves
near cutoff frequencies. The reason for the ineffectiveness of PML
for absorbing evanescent waves is explained. Comparative study
of PML and Higden’s boundary condition shows that high-order
Higdon’s boundary condition can reach the same performance of
16-cell PML and can be adjusted for absorbing evanescent waves,
but PML is in general more robust to implement. Performance
of the boundary condition obtained by combining PML and
Higdon’s boundary condition is evaluated.

I. INTRODUCTION

HE PERFECTLY matched layer (PML), recently pro-
posed by Berenger, is an artificial lossy material used
for the truncation of numerical computation domains in ap-
plying the finite-difference time-domain method [1], [2]. The
performance of PML, reported in [1], [2], appears to be over-
whelmingly superior to other available absorbing boundary
conditions. Several papers have also appeared, soon after
Berenger’s invention, that verified the method of PML and
successfully implemented PML in many applications [3], ]4].
This paper presents a detailed study of the performance of
PML as it is applied to model wave propagation in waveguide
structures used in microwave and digital circuit interconnects.
Unlike situations in most scattering problems, evanescent
waves are frequently encountered in waveguide structures.
While some positive results on PML for evanescent waves
in waveguides have recently been reported [4], the analytic
field solution in PML, as presented by Berenger [1], implies
that PML shouldn’t work for evanescent waves.
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Our numerical tests show that PML is indeed very effective
in absorbing TEM and quasi-TEM waves, as well as nonTEM
waves somewhat above cutoff frequencies. These numerical
tests also confirm that PML is ineffective in absorbing evanes-
cent waves and nonTEM waves near cutoff frequencies.

This paper begins with a discussion on the wave propagation
in PML and on numerical implementation of PML. The
mechanism of how PML absorbs propagating waves but
not evanescent waves is explained. A relation between the
thickness and the conductivity profile of the perfectly matched
layer is provided as a guideline for implementing PML. The
performance of the standard Yee’s time-marching scheme is
compared with the exponential time-marching scheme used
by Berenger [1], ]12]. Section III presents the performance of
PML for parallel-plate and rectangular waveguides. Analytic
predictions on behaviors of propagating and evanescent waves
in waveguides filled with PML are compared with numerically
computed results. Comparisons are made between PML and
high order Higdon’s type of boundary conditions. The per-
formance of the boundary condition resulted from combining
PML and Higdon’s type of boundary condition is evaluated.
Effects of PML in modeling wave propagation in microstrip
lines are presented in Section IV.

II. WAVE PROPAGATION IN PML
AND NUMERICAL IMPLEMENTATION ISSUES

With the PML technique introduced by Berenger, the six
components of the electromagnetic field are split into 12
subcomponents, and the six scalar Maxwell’s equations are
replaced by 12 scalar equations. The PML medium has both
electric and magnetic losses. By properly associating different
electric or magnetic conductivities to different subcomponents,
Berenger showed that PML theoretically would not cause any
reflection at an interface with the free-space for incident fields
of any frequencies and incident angles. Detailed formulations
of PML can be found in [1]-[3] and are not to be repeated here.

A. Wave Propagation in PML

Let us take a 2-D example for illustration. Suppose, in the
z-y plane, a semi-infinite PML medium is interfaced with a
semi-infinite free space at the surface z = 0. The PML is in
the region z > 0. Based on the criteria described by Berenger
for determining the electric and magnetic losses in PML [1],
the electric and magnetic conductivities, o, and a;, should be
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zero; and the electric and magnetic conductivities, o,, and o7,
should satisfy the condition

0z/€0 = 03/ 1o- 1)
Consider an incident field in the free space
/‘p - d)oejw(t_mcos f—(}:-ysing) (2)

where 1 represents any component of the field, g is its
amplitude, c is the speed of light, and  is the angle between
the z axis and the direction of the wavenumber vector.
Berenger showed that the field component 1, after entering
the PML medium, could be expressed as [1]}

Y= 'éboejw(t_

Next, let us have a close examination of (3) to see how
a wave propagates in PML. If in the z direction the field
is Egggagating, then cos¢ is a real number, and the term
~ 7% in (3) contributes to the attenuation of the field.
The smaller the angle ¢, the larger the attenuation. When the
angle ¢ reaches 90°, there will be no attenuation of the wave
in PML. On the other hand, if the variation of the field in the
z direction is of evanescent nature, cos ¢ will be an imaginary
number, and the term e~ %05 "% no longer decays the field in
the z direction. In this case, the presence of the PML does not
add any additional attenuation of the wave beyond the original
attenuation (due to the term e~7“% %) of the evanescent
wave itself.

From the properties of the wave propagation in PML
discussed above, one can predict that, in the modeling of wave
propagation in waveguide structures, PML can be effective
for waves somewhat above cutoff frequencies, but ineffective
for waves near cutoff frequencies (when cosy is close to
zero) and evanescent waves (when cosy is an imaginary
number). Numerical tests presented in later sections of this
paper confirm this prediction.
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B. Selection of PML Parameters

In actual numerical computations, the thickness of PML
is finite, and the PML is terminated by a boundary, say, an

electric wall. As the wave in PML reaches the terminating -

boundary and gets reflected, it is further attenuated as it
propagates back toward the free space—PML interface. The
remaining part of this backward propagated wave at the free
space—PML interface will pass through the interface and
enter the free-space region as an unwanted reflection wave.
By adjusting the value of conductivity, one can control the
amount of attenuation in PML, i.e., the amount of reflection
from PML.

The free space—PML interface has theoretically no reflec-
tion to incident fields of any frequencies and incident angles.
For any thickness of PML, ideally one can choose ¢’s to be
sufficiently large to make reflection from PML as small as
wanted. However, this is not the case in actual numerical com-
putations. Any discontinuities in material properties, such as
the conductivity o, will cause numerical reflections. Therefore
it is of advantage to have conductivity ¢ vary continuously
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Fig. 1. Numerical reflection coefficient versus theoretical reflection coeffi-
cient at the normal incident angle for 4-cell PML of different conductivity
profiles. Curves 1-6 correspond to n in (4) be chosen as 0, 0.5, 1, 1.5, 2,
and 2.5, Curve 7 is a line on which the numerical reflection coefficient equals
the theoretical one.
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Fig. 2. Optimum range of the value n in (4) for different thicknesses of
PML.

with space, as done by Berenger [1]. That is, let o increase
from zero at the free space—PML interface to its maximum
value o, at the outer side of the PML gradually. Let the
thickness of PML be denoted as 8, the conductivity ¢ can
take the following form

o(2) = om ()" @

Then, for PML terminated by an electric wall, the theoretical
reflection coefficient Ry, when the reflection due to the spatial
variation of conductivity is ignored, can be calculated as

Ren(p) =
2 —mu'icoscp
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From the theoretical reflection coefficient Ry, at the normal
incidence (¢ = 0) and the power n, the maximum value of
the conductivity o, can be found as

S _<_ni2§_>639 ©)

The actual reflection coefficient in the numerical compu-
tation, denoted as R,um, iS somewhat different from the
theoretical one. If the theoretical reflection coefficient Ry, is
set to be too small, then the abrupt change of o with space
can result in a large reflection in the numerical computation.
Therefore, the value of Ry, as well as the power n need
to be properly chosen to achieve small reflections. Fig. 1
shows the numerical reflection coefficient R, obtained

ln Rth'
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Fig. 3. Optimum range of theoretical reflection coefficients as well as
the corresponding achievable numerical reflection coefficients at the normal
incident angle for different thicknesses of PML.

from numerical computations, versus the theotetical reflection
coefficient R;p, at the normal incident angle for 4-cell thick
PML. Curves 1-6 in Fig. 1 cortespond to the power n chosen
to be 0, 0.5, 1, 1.5, 2, and 2.5, respectively. Curve 7 is a
reference line on which the numerical reflection coefficient
equals the theoretical one. From Fig. 1, it can be seen that
the optimum values of Ry, and n are somewhat fuzzy to
determine. However, one can obtain a range of Ry, and n,
within which the numerical reflection is small. The good
ranges of Ry, and n are found to be different for different
thicknesses of PML. The thicker the PML,, the larger the value
of n, and the smaller the value of R;}, should be chosen. From
extensive numerical tests, the optimum range of n versus the
thickness of PML medium is presented in Fig. 2, and the
optimum range of Ry versus the PML thickness is shown
in Fig. 3. Fig. 3 also shows the range of actual numerical
reflection coefficient, at the normal incident of angle, that can
be expected when n and Ry, are chosen within the specified
regions shown in Figs. 2 and 3.

C. Time-Marching Schemes in Implementing PML

In Berenger’s papers, the exponential time-marching scheme
was used in the finite-difference equations for PML [1],
[2]. Our tests show no noticeable differences in numerical
results obtained by the exponential time-marching scheme and
the standard Yee’s central difference scheme. Fig. 4 shows
the numerical reflection coefficients, at the normal incident
angle, of an 8-cell PML implemented with the exponential
time-marching scheme and the standard Yee’s scheme. The
numerical reflection coefficient is obtained by the ratio of the
Fourier transformed reflected field and the incident field. In
this example, the theoretical reflection coefficients of PML are
chosen as 103 and 1079, respectively, and the value of power
n in (4) is set to 2. As can be seen from Fig. 4, there is virtually
no difference in numerical results computed by the exponential
time-marching scheme and the standard Yee’s scheme. Same
observations are obtained in cases where incident waves are
not of the normal incident angle.

The reason for the above phenomenon can be explained as
follows. Inside the PML medium, fields may vary rapidly in
space, but they do not vary any faster in time than they do
when PML is absent. Therefore, the selection of the time-
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Fig. 4. Comparison between reflection coefficients of an 8-cell PML imple-
mented with the central difference and exponential time-marching schemes.
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Fig. 5. Cross section of a parallel-plate waveguide (¢ = 40 mm).

marching scheme is not critical and it is not essential to use
the exponential time-marching scheme in implementing PML.

ITII. NUMERICAL TESTS OF PML APPLIED TOWAVEGUIDES

A, Performance of PML for Waveguides

Consider the structure of a parallel-plate waveguide shown
in Fig. 5. The separation a between the two metal plates is
40 mm. The lowest order mode of this structure is the TMj
mode which is actually a TEM mode with a cutoff frequency
at dc. The propagation of the TMp mode fields along the
parallel-plate waveguide is essentially a 1-D wave propagation
problem. For absorbing outgoing waves of TMy mode, which
are of normal incident angle to the free space—PML interface,
the PML boundary condition can perform very well in an
ultra-wide frequency spectrum, as reported in [4].

The lowest order nonTEM mode in the parallel-plate wave-
guide is TM; and TE; modes, which both have a cutoff
frequency f. = ¢/2a = 3.75 GHz. Let us first examine how
the PML boundary condition performs for absorbing the TM;
mode wave. Fig. 6 shows the numerical reflection coefficients
versus frequency for 16-cell PML, calculated as the ratio of the
reflected wave and the incident wave at the location of free
space—PML interface. The theoretical reflection coefficient
R, of PML is chosen to be 10~%,10~%,108, and 10719,
respectively, and the conductivity profiles of PML are all
chosen to be parabolic (n = 2 ). It can be seen from Fig. 6
that the performance of PML for TM; mode is quite different
from that for TMy mode. In the frequency range somewhat
above the cutoff frequency, PML performs very well. The
numerical reflection reaches its minimum obtainable value
when the theoretical reflection coefficient Ry, is set at about
107 or below. At the cutoff frequency, as can be observed
from Fig. 6, all the reflection coefficients approach to 1. In
the frequency range below f., where waves are evanescent, it
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Fig. 6. Numerical reflection coefficients of TM1 mode for 16-cell PML
in the parallel-plate waveguide of Fig. 5, when the theoretical reflection
coefficient is set at different values.
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Fig. 7. Numerical refiection coefficients of TM; mode in the paraliel-plate
waveguide of Fig. 5 for PML’s of different thicknesses. The theoretical
reflection coefficient of PML is set at 10—,

is clear that the reflection coefficients are significantly larger
than those in the frequency range above f.. These numerical
results are consistent with the prediction made in Section
II. Fig. 7 displays the reflection coefficients versus frequency
for 4-cell, 8-cell, and 16-cell PML’s, where the theoretical
reflection coefficient is set at 10~ and the conductivity profile
is parabolic. Similar conclusions can be obtained from the
results in Fig. 7 as those from Fig. 6. In the frequency range
below the cutoff, the smaller reflection coefficient for thicker
PML medium, seen from Fig. 7, is not due to the absorption
of evanescent waves in PML, but is simply due to the
original attenuation of the evanescent wave in the longer round
path from the free space—PML interface to the electric wall
terminating the PML medium. As a matter of fact, PML does
not introduce additional attenuation to the evanescent wave,
while the spatial variation of conductivity in PML causes
additional reflections. As will be shown later, the attenuation
of evanescent waves in a section of PML is actually somewhat
smaller than that in a section of free space of the same length.

For the structure of the parallel-plate waveguide, it is
possible to find analytic solutions of the field in free space
and in PML medium. Let us consider the case in which the
conductivities (o,0*) of PML are constant with space. For
TM; mode, it is easy to find that & sin ¢ and & cos ¢ in (3) are

ksing =7/a M
w2pgep — (w/a)?. 8)

By substituting ksine and kcose in (7) and (8) into (3),
one can find that, when frequency f is larger than f., the

kcosp =
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attenuation constant o and the phase constant /3 are

o= Eﬂ—c-\/uﬂpoeo —(r/a)? 9

(1)
B = v/ w?uoey — (w/a)?.

When f < f.,kcosyp becomes an imaginary number, the
attenuation and phase constants can be found as

10

o = T e, ()
b= I el . (1D
€W

Expressions in (9) to (12) give us the following indications:

1) The attenuation constant below the cutoff frequency is
exactly the same as that in the waveguide filled with
free space. That is, evanescent waves in PML attenuate
in the same rate as those in the waveguide filled with
free space.

2) The phase constant above the cutoff frequency is exactly
the same as that in the waveguide filled with free space.
That is, propagating waves in PML ftravel in the same
speed as those in the vacuum-filled waveguide.

3) The attenuation constant above the cutoff frequency is
not zero. This is why PML can absorb propagating
waves above the cutoff frequency. But as the frequency
approaches the cutoff frequency, the attenuation constant
« also approaches zero, indicating total reflection at the
cutoff frequency.

4) The phase constant below the cutoff frequency is not
zero, but is of the “abnormal” negative values.

Analyses above explain why PML is effective for absorbing
propagating waves and ineffective for absorbing evanescent
waves and waves near the cutoff frequency. It is actually not
a difficult task to verify the results in (9) to (12) numerically.
By launching a TM; mode wave in a waveguide filled with
PML, a field component 2 at two locations,  and z + h, along
the longitudinal direction of the waveguide can be recorded.
The attenuation and phase constants of the TMy wave in PML
can be extracted by following operations

1| Pl

T h Flp(z + h,t)] (13)

L DM
ﬂ“hl(lfww+mwo 1

where F represents the Fourier transform, Im is the operator
of taking the imaginary part of a complex variable. The
waveguide for this test is chosen to be long enough so
that reflections from end boundaries have not reached the
observation points at the time the incident wave is diminished
to virtually zero.

Fig. 8 shows the attenuation constant o versus frequency,
obtained from numerical computation, expressed in (13), and
from theoretical derivations, expressed in (9) and (11). Fig. 9
shows the comparison of numerically and theoretically com-
puted phase constant 3 versus frequency. The conductivity of
PML is constant in space and chosen to be 0.1 S/m. As can
be seen from Figs. 8 and 9, theoretical predictions on o and
B match very well with numerical solutions.



2680

80 — NUMERICAL
- THEORETICAL

40

L

i 5 y
5 10 15 20

ATTENUATION CONSTANT c. (Np/m)

o

FREQUENCY (GHz)

Fig. 8. Attenuation constant in a parallel-plate waveguide filled with PML.
The electric conductivity of PML is constant and equal to 0.1 S/m.
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Fig. 9. Phase constant in a parallel-plate waveguide filled with PML. The
electric conductivity of PML is constant and equal to 0.1 S/m.

Next, let us look at TE modes of the parallel-plate wave-
guide. The TE,, mode of the parallel-plate waveguide is
actually the same as the TE,,o mode of the rectangular wave-
guide. Fig. 10 displays the numerical reflection coefficients
versus frequency for TE1g, TEgp and TEsp, modes of a
rectangular waveguide, where the PML medium of a parabolic
conductivity profile is of 16-cell thick. From Fig. 10, the
same conclusions can be made as those for the TM; mode
of the parallel-plate waveguide. Since higher-order evanescent
waves attenuate faster than lower-order ones, reflections of
higher-order evanescent waves are consequently smaller.

B. Performance of Higdon’s Type of Boundary
Condition for Waveguides

As a comparison with PML boundary condition, let us
consider Higdon’s type of absorbing boundary condition. The
principle and analysis of Higdon’s boundary condition can
be found in [5], [6]. In [7], Higdon’s boundary condition is
revised to absorb propagating and/or evanescent waves. The
general expression of the Higdon’s type of boundary condition
can be written as

+ az)

ﬁ g_l_cosgoZ 0
Pl oz c Ot

where ;’s and «;’s are parameters. The Ni,-order boundary
condition (15) consists of N first-order boundary operators,
each has its parameter (¢;, ;).

For a plane wave of an attenuation constant « in the z
direction and an incident angle ¢, the reflection coefficient of

p=0 (15)
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Fig. 10. Reflection coefficients of TE;q, TEgg and TE3¢ modes in a rect-
angular waveguide for 16-ceil PML with its theoretical reflection coefficient
set at 10~%

the boundary condition (15) can be found to be approximately

R~ _H (s — @) + j%(cos p; — cos @)
= iy (o + ) + j(cos i + cos )

(16)

From (16), it can be seen that minimum reflection occurs when
oy; is chosen to be «a, and ; is chosen to be . For a certain

 mode of field in a waveguide, the incident angle ¢ and the

attenuation constant « are frequency dependent. Therefore, one
pair of {¢;, «;) corresponds to one particular frequency around
which the reflection coefficient of the boundary condition is
small. If we can select the /N pairs of (y;, ;) at proper
frequencies, it is possible to have the boundary condition (15)
perform well over a very wide frequency spectrum.

Let us consider the TM; mode of the parallel-plate wave-
guide of Fig. 5 again. Fig. 11 shows the reflection coefficient
of a fourth-order (N = 4) Higdon’s boundary condition,
where the frequencies of optimum absorption are chosen to
be 5, 8, 12, and 16 GHz. Since the frequencies of optimum
absorption are all above the cutoff frequency (3.75 GHz),
o;’s should be zero. In numerical computations, especially
for high-order boundary conditions (N > 3), a small value
of a; can help maintain the stability of computation [8]. For
the results shown in Fig. 11, the «;’s are chosen as follows:
a3 = 0,03 = 0,a3 = 0.02/dx and a4 = 0.02/dz, where dx
is the space step of the finite-difference grid. The reflection
coefficient shown in Fig. 11 is obtained from the incident and
the reflected fields 16 cells away from the outer boundary,
Comparison between results of Higdon’s boundary condition
in Fig. 11 and those of 16-cell PML in Fig. 6 shows that,
for propagating waves, the reflection coefficient of a fourth-
order Higdon’s boundary condition can also reach as low as
—100 dB, which is not worse than that of a 16-cell PML.
Also notice that, in Fig. 11, the teflection coefficient in the
frequency range below f. is somewhat smaller than those in
Fig. 6, although the Higdon’s boundary condition for this test
is not set to absorb evanescent waves.

Higdon’s boundary condition (15) can be set to absorb
evanescent waves, as shown in [7]. We can select some
boundary operators to absorb propagating waves, while others
to absorb evanescent waves. Fig: 12 shows the reflection co-
efficient for a fifth-order Higdon’s boundary condition, where
the frequencies of optimum absorption are chosen to be 1, 2.5,
5, 10, and 15 GHz. That is, there are two boundary operators
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Fig. 11. Reflection coefficient of a fourth-order Higdon’s boundary condition
with its optimum frequencies of absorption set at 5, 8, 12, and 16 GHz.
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Fig. 12. Reflection coefficient of a fifth-order Higdon’s boundary condition
with its optimum frequencies of absorption set at 1, 2.5, 5, 10, and 15 GHz.

set for evanescent waves, and three for propagating waves.
Corresponding parameters for this boundary condition are:
Q] = 75.7,0[2 = 58.5,0&3 = 20,(14 = 0,0&5 = O; COs Y1 =
0,cospy = 0,cosps = 0.968,cospy = 0.927,cosp; =
0.66, From Fig. 12, we can see the reflection coefficient for
evanescent waves is substantially reduced from that in Fig. 11
and from those corresponding to PML shown in Figs. 6 and 7.

From above comparisons between PML and Higdon’s
boundary condition, we can find the following advantages
and disadvantages of the two boundary conditions. PML
can absorb propagating waves very well but not evanescent
waves. So PML cannot be placed very close to waveguide
discontinuities where evanescent waves are significant.
Higdon’s boundary condition can be tuned to absorb
both evanescent and propagating waves. The selection of
parameters of Higdon’s boundary condition is geometry and
mode dependent, and one needs to pay special attention to
numerical stability, while PML does not need much tuning
in its implementation.

C. Combination of PML with Higdon’s Type
of Boundary Condition

From the above discussions, it scems that the combination
of PML with Higdon’s boundary condition should result in a
good absorbing boundary condition for both propagating and
evanescent waves. That is, the PML medium is terminated
by a Higdon’s type of boundary condition instead of by an
electric wall. With such a boundary condition, the propagating
wave is mostly absorbed by PML, and the evanescent wave
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is absorbed by the Higdon’s boundary condition set for the
evanescent wave.

However, the above expectation is not met in numerical
tests. Numerical computations show that Higdon’s boundary
condition for terminating PML can actually do little improve-
ment on absorbing evanescent waves. The reason for this
phenomenon can be explained as follows.

For an incident wave expressed in (3) in a PML, the
reflection coefficient of Higdon’s boundary condition (15) can
be found to be approximately

—H(al—a +j( coscpi—ﬂ) a7
i +a) +j( cosgai—l—ﬂ)'
In order to have small reflection for evanescent waves, pa-
rameters «,’s should match the attenuation constant «, and
parameters w/ccos @,’s should match the phase constant j.
Notice that the phase constant G in PML is of negative values
for evanescent waves, as can be seen from (12) and Fig. 9. It
is found that the selection of negative values of w/ccos,
will lead to unstable numerical solutions. So the value of
w/eccos p; that is closest to the value of the phase constant
8 of evanescent waves is zero, When w/ccos p;’s are set to
zero, (17) becomes
H (i =) = jp 8
L (i + o) + 58

The absolute values of 3 are typically much larger than those
of «. Therefore, even the parameter o; matches the attenuation
constant «, as can be seen from (18), the reflection coefficient
R is not to be reduced significantly.

Fig. 13 shows the numerical reflection coefficients of PML
terminated by various boundary conditions. The PML medium
for this test is of parabolic conductivity profile, 16-cells thick,
and a theoretical reflection coefficient of 10~%. The Higdon’s
boundary conditions terminating PML are all of the first-
order. The incident wave considered is the TM; mode of the
parallel-plate waveguide shown in Fig. 5. Curve 1 in Fig. 13
corresponds to PML terminated by an electric wall. Curve
2 corresponds to PML terminated by a first-order Higdon’s
boundary condition with «; and cos¢; chosen to be zero.
When a3 and cos¢y are both equal to zero, the Higdon’s
boundary condition actually represents a magnetic wall. The
location of the magnetic wall is at half-space step away from
the terminating boundary, and this is probably the reason why
the reflection coefficient of curve 2 is a little larger than that
of curve 1. For curve 3 in Fig. 13, the parameter o1 is chosen
to be 58.5, and cos ¢y is zero. The value of oy matches the
attenuation constant « at the frequency 2.5 GHz. It can be seen
that the Higdon’s boundary condition terminating PML has
little effect, even at 2.5 GHz, in absorbing evanescent waves.
For curve 4, parameters «y and cos ¢, are chosen to be 704.3
and 0.93, which match the attenuation and phase constants
in the PML half-space step to the terminating boundary at
the frequency of 10 GHz. As can be seen from Fig. 13,
such Higdon’s boundary condition can substantially reduce
the reflection of propagating waves.



2682

(=3

—— PML+HIGDON'S with a;=0, c0s¢,~0

~~~~~~~ PML+HIGDON'S with 0,,=58.5, cosq,=0
----- PML+HIGDON'S with ay=704.3, €0s(=0.93
- - ~= PML enly ( + electric wally

REFLECTION COEFFICIENT (dB)
o)}
o
T

8oL
-100}
120 . L L )
0 5 10 15 20
FREQUENCY (GHz)

Fig. 13. Reflection coefficients of a 16-cell PML terminated with different
boundary conditions.
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Fig. 14. Cross section of the computation domain for a microstrip line. The
width of the metal strip is W = 1000 pm. The thickness of the substrate A =
500 pm. The space step Az = Ay = Az = 125 pm. Due to the symmetry
of the structure, half of the physical structure is computed.

Numerical results shown above demonstrate that the combi-
nation of PML with Higdon’s boundary condition can improve
the absorption property for propagating waves, but not for
evanescent waves.

IV. NUMERICAL TESTS OF PML
APPLIED TO MICROSTRIP LINES

To simulate a wave propagation along a microstrip line,
PML is placed near the outer computation domain, as shown in
Fig. 14. Due to the symmetry of the structure, only half of the
3-D structure is computed, and the surface at the center of the
metal strip is modeled as a magnetic wall. The number of space
steps in the transverse cross section of the computation domain
nz and ny are denoted in Fig. 14. The relative dielectric
constant of the substrate is 4.

At the end surfaces perpendicular to the metal strip, where
outgoing waves incident upon outer boundaries in near normal
incident angles, PML works very well as expected. A 16-cell
PML can make the reflection coefficient as low as —80 dB.
On the top and the side surfaces of the computation domain,
where fields are mostly evanescent in the direction normal to
outer surfaces and propagating wave components are incident
upon outer boundaries with grazing angles, PML is found to
be less effective.

Fig. 15 shows the percentage errors in the computed voltage
of the microstrip line for different thicknesses of the PML
placed at different distances away from the center of the
metal strip. Computation domains in the transverse direction
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Fig. 15. Percentage errors in the computed voltage of the microstrip. line of
Fig. 14. The computation domain of the cross section is of 20 x 20 or 14 x 14
cells. The thickness of PML is 8 or 4 cells.
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Fig. 16. Numerically computed effective dielectric constant of the microstrip

line of Fig. 14. The computation domain of the cross section is of 20 X 20
or 14 x 14 cells. The thickness of PML is 8 or 4 cells.

(nz x ny) for the results shown in Fig. 15 are 14 x 14 and
20 x 20. The percentage errors in the voltage of the microstrip
line is calculated with respect to the reference voltage obtained
with a very large computation domain. The large computation
domain is of the size nx x ny = 210 x 80, and terminated
by a fourth-order Higdon’s boundary condition. Fig. 16 is the
corresponding computed effective dielectric constant e..g of
the microstrip line for PML’s of different thicknesses and
distances to the center of the metal strip. €. is calculated
from the Fourier transform of voltages at two locations along
the microstrip line [9]. In Fig. 16, the curve for the 8-cell
PML and for nz x ny = 20 x 20 almost coincides with the
one computed with the large computation domain, while other
curves contain substantial errors. It can be seen from Figs. 15
and 16 that PML in general can be used for the simulation
of wave propagation along microstrip structures, but needs to
be placed at a certain distance away from the metal strip and
of enough thickness to ensure the reliability of the computed
electrical properties.

V. CONCLUSION

This paper presents the numerical implementation and per-
formance of perfectly matched layer boundary condition for'
modeling wave propagation in waveguide structures. It is
shown theoretically and numerically that PML is very effective
in absorbing propagating waves and ineffective in absorbing
evanescent waves. The combination of PML with Higdon’s
boundary condition can enhance the absorption property for
propagating waves but not for evanescent waves. In modeling



WU AND FANG: NUMERICAL IMPLEMENTATION AND PERFORMANCE OF PML BOUNDARY CONDITION

wave propagations in waveguide structures, PML needs to be
placed at certain distance away from modeled structures where
evanescent waves are significant.

In our most recent work, a modified formulation of the per-
fectly matched layer is derived. This new boundary condition,
which we call the generalized perfectly matched layer (GPML)
is found to be able to effectively absorb both propagating and
evanescent waves and perfectly match nonPML lossy media
[10].
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